Graph-Based Inverse Optimal Control for Robot Manipulation
نویسندگان
چکیده
Inverse optimal control (IOC) is a powerful approach for learning robotic controllers from demonstration that estimates a cost function which rationalizes demonstrated control trajectories. Unfortunately, its applicability is difficult in settings where optimal control can only be solved approximately. While local IOC approaches have been shown to successfully learn cost functions in such settings, they rely on the availability of good reference trajectories, which might not be available at test time. We address the problem of using IOC to find appropriate reference trajectories in these computationally challenging control tasks. Our approach uses a graph-based discretization of the trajectory space and projects continuous demonstrations into this graph, where a cost function can be tractably learned via IOC. Discrete control trajectories from the graph are then projected back to the original space and locally optimized using the learned cost function. We demonstrate the effectiveness of the approach with experiments conducted on two 7-degree of freedom robotic arms.
منابع مشابه
Planning and Control of Two-Link Rigid Flexible Manipulators in Dynamic Object Manipulation Missions
This research focuses on proposing an optimal trajectory planning and control method of two link rigid-flexible manipulators (TLRFM) for Dynamic Object Manipulation (DOM) missions. For the first time, achievement of DOM task using a rotating one flexible link robot was taken into account in [20]. The authors do not aim to contribute on either trajectory tracking or vibration control of the End-...
متن کاملOptimal Trajectory Planning of a Box Transporter Mobile Robot
This paper aims to discuss the requirements of safe and smooth trajectory planning of transporter mobile robots to perform non-prehensile object manipulation task. In non-prehensile approach, the robot and the object must keep their grasp-less contact during manipulation task. To this end, dynamic grasp concept is employed for a box manipulation task and corresponding conditions are obtained an...
متن کاملAdaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy
This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...
متن کاملFlexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملManipulation Control of a Flexible Space Free Flying Robot Using Fuzzy Tuning Approach
Cooperative object manipulation control of rigid-flexible multi-body systems in space is studied in this paper. During such tasks, flexible members like solar panels may get vibrated that in turn may lead to some oscillatory disturbing forces on other subsystems, and consequently produces error in the motion of the end-effectors of the cooperative manipulating arms. Therefore, to design and dev...
متن کامل